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Abstract
Explicit analytic expressions are obtained for the density of states D(E) and
Fermi energy EF of a two-dimensional electron gas in the presence of a weak
and periodic unidirectional electric or magnetic modulation and of a uniform
perpendicular magnetic field B . The Landau levels broaden into bands and
their width, proportional to the modulation strength, oscillates with B and gives
rise to Weiss oscillations in D(E), EF and the transport coefficients. When
both electric and magnetic modulations are present the position of the resulting
oscillations depends on the ratio δbetween the two modulation strengths. When
the modulations are out of phase there is no shift in the position of the oscillations
when δ varies and for a particular value of δ the oscillations are suppressed.

1. Introduction

The transport coefficients of a two-dimensional electron gas (2DEG) subjected to weak and
periodic electric or magnetic modulations, along one or two directions, oscillate [1] as a
function of the perpendicular magnetic field B . These so-called Weiss oscillations are now
well established both theoretically [2] and experimentally [3, 4]. The modulation broadens
the Landau levels into bands and their width, proportional to the strength of the modulation,
oscillates with the strength of the field B . These oscillations reflect the commensurability
between two length scales: the cyclotron diameter at the Fermi level 2Rc = 2

√
2πne�

2

(where ne is the electron density and � = √
h̄/eB the magnetic length) and the period of the

modulation a. For a magnetic modulation the phase of the oscillations is shifted by π/2 with
respect to those occurring when an electric modulation is present.

The Weiss oscillations occur in weak fields B , prior to the Shubnikov–de Haas (SdH)
oscillations, and are robust against temperature, i.e., they disappear at substantially higher
temperatures than the SdH oscillations. They also show up in the thermodynamic quantities
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such as the Fermi level and the density of states (DOS). Despite numerous studies, to our
knowledge these quantities have been evaluated only numerically. It is of interest to have as
explicit and simple expressions for them as possible, valid for the relevant weak magnetic
fields. This would be useful in magnetocapacitance experiments that directly probe the DOS
at the Fermi level, especially for the less studied magnetic modulations.

The purpose of this paper is to provide analytic expressions for the DOS and the Fermi level
valid in the presence of either modulation or both modulations. The reason for considering
the latter case is that from the experimentally known methods of magnetic modulation one
expects that the magnetic [5] or superconducting stripes [6], periodically placed on top of a
2DEG, act like electrical gates and induce an electric modulation of the 2DEG. As shown in our
previous work on transport [7, 8], the relative phase of the two modulations can have important
consequences and even suppress the Weiss oscillations as was confirmed experimentally [9].

The paper is organized as follows. In section 2 we briefly present the energy spectrum of
a modulated 2DEG in the presence of a normal field B and point out some of its consequences.
In sections 3 and 4 we evaluate, respectively, the broadened DOS and the Fermi level for either
modulation alone. Then in section 5 we indicate how these results are modified when both
modulations are present. Concluding remarks follow in the last section.

2. Energy spectrum

We consider a 2DEG, in the (x, y) plane, subjected to a perpendicular magnetic field B and
to a weak, electric, U(x), or magnetic, B(x), periodic potential. In the first case we take
U(x) = V0 cos(K x), K = 2π/a, where a is the modulation period, and use the Landau gauge
for the vector potential A = (0, Bx, 0). In the effective-mass approximation the one-electron
Hamiltonian is H = (p + eA)2/2m∗ + U(x), where pµ(µ = x, y) is the momentum operator.
In the second case we consider the vector potential A = (0, Bx + (B0/K ) sin(K x), 0) that
describes a periodically modulated magnetic field B = (B + B0 cos(K x))ẑ and take B0 � B;
this implies ω0 = eB0/m∗ � ωc = eB/m∗, where ωc is the cyclotron frequency. The one-
electron Hamiltonian is simply H = (p + eA)2/2m∗ and in the absence of the modulation,
i.e., for U(x) = 0 or ω0 = 0, the normalized eigenvector is ψnky = eiky yφn(x − x0)/

√
L y ,

where x0 = −�2ky = −h̄ky/eB is the centre coordinate of the cyclotron orbit, L y the width of
the sample in the y direction and n the Landau level index. φn(x) is the well known harmonic
oscillator wavefunction. In the absence of modulation the eigenvalues are Enky = (n+1/2)h̄ωc

which are degenerate with respect to the wavevector ky along the y-direction.
In the presence of a weak modulation the energy correction to Enky is obtained [7] by

first-order perturbation theory using the unperturbed eigenstates ψnky . To first order in the
modulation strength the energy spectrum is

Enky = (n + 1/2)h̄ωc + V0 Fn(u) cos(K x0) (1)

for an electric modulation, and

Enky = (n + 1/2)h̄ωc + h̄ω0Gn(u) cos(K x0) (2)

for a magnetic modulation. Here u = K 2�2/2, Fn(u) = e−u/2 Ln(u) and Gn(u) =
e−u/2[Ln(u)/2 + L1

n−1(u)] = −∂ Fn(u)/∂u, Ln(u) is a Laguerre polynomial. Since x0 =
−�2ky , the ky degeneracy of the energy levels is lifted and the energy levels broaden into
bands. This energy spectrum can also be derived semiclassically as shown in [7].

For the experimentally relevant weak magnetic fields B it is a good approximation to take
the large-n limit of the Laguerre polynomials that appear in Gn(u) and Fn(u). For the electric
modulation the width of the Landau level at the Fermi energy is then obtained as

2V0|Fn(u)| ≈ 2V0(2/π K Rc)
1/2| cos(K Rc − π/4)|. (3)



Density of states and Fermi level of a periodically modulated two-dimensional electron gas 8805

The corresponding result for the magnetic modulation is obtained by replacing V0 by h̄ω0 and
Fn(u) by Gn(u); it reads

2h̄ω0|Gn(u)| ≈ 2h̄ω0(akF/2π)(2/π K Rc)
1/2| sin(K Rc − π/4)|. (4)

Here Rc = (2nF + 1)1/2� is the cyclotron radius at the Fermi energy and nF is defined as
the largest integer contained in EF/h̄ωc − 1/2. From equation (4) we obtain the flat-band
condition as 2Rc/a = i + 1/4; the maximum bandwidth occurs for 2Rc/a = i + 3/4, with
i = 0, 1, 2, . . ..

Equations (3) and (4) are valid in the low-magnetic-field limit, typically B � 1 T, in
which case we have nF � 1 for typical two-dimensional electron densities. Comparing
equation (3) with (4) we see that (1) there is a π/2 phase shift between the bandwidths, and
(2) the amplitude in the magnetic modulation case is larger by a factor akF/2π = √

nea2/2π

(=7.6 for ne = 3 × 1011 cm−2 and a = 3500 Å) than that of the electric case for equal
modulation strengths. An illustration of that is given in [7] in which the effect of the modulation
on the resistivity is evaluated.

3. Density of states

The qualitative differences in the energy spectrum, with or without either modulation, are also
reflected in the DOS: D(E) = ∑

n,ky
δ(E − En,ky ), expressed per unit area surface. With

t = K x0 the DOS takes the form
D(E)

D0
= h̄ωc

2

∞∑
n=0

1

2π

∫ 2π

0
dt δ(E − En,t), (5)

where D0 = m∗/π h̄2 is the DOS of a free 2DEG at B = 0. When evaluated numerically [8] the
DOS shows van Hove singularities at the edges of the modulation-broadened Landau levels.
This reflects the one-dimensional nature of the electron motion.

In practical systems this DOS will always be broadened due to the presence of scattering
centres. This is reasonable because we limit ourselves to the case of the experimentally
important weak magnetic fields. The results for a Gaussian broadening are given in the
appendix. Here we assume a Lorentzian broadening of zero shift and constant width �;
in this case equation (5) takes the form

D(E)

D0
= h̄ωc

2

∞∑
n=0

1

2π

∫ 2π

0
dt

�/π

(E − En,t)2 + �2
. (6)

Here and in equation (5) we have En,t = En +	n cos t with 	n = V0 Fn(u) or 	n = h̄ω0Gn(u).
In order to get the correct low-energy limit of D(E) we have to multiply the right-hand
side of equation (6) by N(Ent ) = [1/2 + arctan(Ent/�)/π]−1, which is the negative energy
contribution of the broadened Landau levels to the DOS.

For weak modulation strengths we expand the integrand of equation (6) in powers of
εn,t = 	n cos t . The odd powers of εn,t = 	n cos t vanish after integration over t . To second
order in the modulation potential the even powers are easily integrated. Taking spin into
account by multiplying the result by 2 the DOS becomes

D(E)

D0
= h̄ωc

π
�

∞∑
n=0

1

(E − En)2 + �2

{
1 +

	2
n

2

3(E − En)
2 − �2

[(E − En)2 + �2]2

}
. (7)

For E ≈ En, i.e., near the centre of the nth Landau level, the expression is valid only when
|	n| � �. The sum over n is carried out using Poisson’s summation formula

∞∑
n=0

f (n + 1/2) =
∫ ∞

0
f (x) dx + 2

∞∑
n=1

(−1)n
∫ ∞

0
f (x) cos(2nπx) dx . (8)
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3.1. Electric modulation

To evaluate the first term in the square brackets of equation (7) we proceed as follows. Since
E ∼ EF � � we can replace −E/� by −∞. Then the corresponding first integral on the right-
hand side, with n + 1/2 → x , gives 1. With y = (xh̄ωc − E)/� the second integral becomes
proportional to

∫ ∞
−∞ dy(1 + y2)−1 cos(2nπ�y/h̄ωc) which is equal to π exp(−2nπ�/h̄ωc).

The final result for this term, labelled D1, is

D1 = 1 + 2
∞∑

n=1

(−1)ne−2nπ�̄ cos(2nπ Ē), (9)

where �̄ = �/h̄ωc and Ē = E/h̄ωc. D1 gives the Lorentzian-broadened DOS of an
unmodulated 2DEG. The limit �̄ → 0 gives the corresponding unbroadened DOS, i.e., a
series of delta functions at the Landau levels.

We denote the second term in the square brackets of equation (7) by D2. We now use
the asymptotic expression of 	n = V0 Fn(u) given by equation (3), the replacement of n by
n + 1/2 since we have n � 1, the expansion (1 + z)1/2 ≈ 1 + z/2 for |z| = �|y|/E � 1
because E ≈ EF and the previous approximations used above. The result corresponding to
the first integral is

− 1

4π

(
V̄0

Ē

)2

αe−α�̄/Ē [sin(2α) + cos(2α)/α], (10)

where α = α(E) =
√

2Ē K� and V̄0 = V0/h̄ωc. With the help of the formula∫ ∞
0 dx cos(ax)/(b2 + x2) = (π/2|b|) exp(−|ab|) the second integral of equation (8) can be

carried out but the result is unwieldy. With the approximation 2nπ Ē ≈ 2nπ EF/h̄ωc � 1 we
obtain

−4π

α
V̄0

2
cos2(α − π/4)

∞∑
n=1

(−1)nn2e−2nπ�̄ cos(2nπ Ē). (11)

Collecting equations (9)–(11), the end result for the DOS is

D(E)

D0
= 1 − 1

4π

(
V̄0

Ē

)2

αe−α�̄/Ē [sin(2α) + cos(2α)/α]

+ 2
∞∑

n=1

(−1)ne−2nπ�̄ cos(2nπ Ē)

[
1 − 2πn2

α
V̄0

2
cos2(α − π/4)

]
. (12)

The modulation introduces two correction terms that are of order V 2
0 , one in the constant

background term and one in the SdH oscillation term.
Figure 1(a) shows the DOS as a function of energy. The solid curve shows the result from

the analytic expression (12) and the dashed one is obtained numerically from equation (6).
The parameters used in the numerical calculation are V0 = 0.5 meV, a = 350 nm, � = 4 K
and B = 0.58 T. As can be seen, the agreement between the two curves is good for most of
the energies. Discrepancies are found near the maxima of the DOS, i.e., at the position of
the Landau levels, where |	n| > � and the expansion (7) is invalid. In figure 1(b) we show
the DOS at the Fermi energy as a function of the magnetic field. The Fermi energy is fixed
at EF = 10 meV. Good agreement is found except at certain magnetic fields for which the
amplitude of the SdH oscillations is slightly underestimated.

3.2. Magnetic modulation

The difference from the previous case is that now 	n = h̄ω0Gn(u) ≈
h̄ω0(n/u)1/4(πu)−1/2 sin(2

√
nu − π/4). The first term in equation (7), now labelled M1,
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Figure 1. (a) The DOS of a 2DEG in a periodic electric modulation as a function of energy.
(b) The DOS at the Fermi energy as a function of the magnetic field. The solid curves result from
equation (12) and the dashed ones are from the integration in equation (6).

is independent of the modulation and is given again by equation (9). We label the second
term M2 and use the same approximations as above. The result for the first integral on the
right-hand side of equation (8), labelled M21, is

M21 = 1

πα

(
ω0

ωc

)2

e−α�̄/Ē [sin(2α) − cos(2α)/α]. (13)

If we make the same approximations as in the electric modulation case, the result for the second
integral on the right-hand side of equation (8), labelled M22, is

M22 = − 4πα

(K�)4

(
ω0

ωc

)2

sin2(α − π/4)

∞∑
n=1

(−1)nn2e−2nπ�̄ cos(2nπ Ē). (14)

Combining equations (9), (13) and (14) we obtain

D(E)

D0
= 1 +

1

πα

(
ω0

ωc

)2

e−α�̄/Ē [sin(2α) − cos(2α)/α]

+ 2
∞∑

n=1

(−1)ne−2nπ�̄ cos(2nπ Ē)

[
1 − 2παn2

(K�)4

(
ω0

ωc

)2

sin2(α − π/4)

]
. (15)

Figure 2(a) shows the DOS as a function of energy. The solid curve is the approximate result
from equation (15) and the dashed one the numerical result from equation (6). The parameters
in the calculation are B0 = 0.04 T, B = 0.58 T, a = 350 nm and � = 4 K. In figure 2(b)
we show the DOS at the Fermi energy as a function of the magnetic field. The Fermi energy
is fixed at EF = 10 meV. The overall agreement is rather good. The disagreement around
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Figure 2. (a) The DOS of a 2DEG in a periodic magnetic modulation as a function of energy.
(b) The DOS at the Fermi energy as a function of the magnetic field. The solid curves result from
equation (15) and the dashed ones from equation (6).

B = 0.28 T and the dips at the DOS maxima for B > 0.5 T are due to the fact that the condition
|	n| � �, used in obtaining equation (7), is not satisfied.

4. Fermi level

4.1. Electric modulation

With a constant electron density ne the Fermi level is determined by

neπ�2 =
∞∑

n=0

1

2π

∫ 2π

0
f (En,t) dt, (16)

where f (E) = 1/(e(E−EF )/kB T + 1) is the Fermi–Dirac distribution function, En,t =
En + 	n cos t and t = K x0. If we expand the Fermi–Dirac function f (En,t) in powers of
	n cos t and integrate over t the odd powers of cos t vanish and equation (16), to second order
in the modulation strength, takes the form

neπ�2 =
∞∑

n=0

1

π

∫ π

0

[
f (En) +

	2
n

2
f ′′(En) cos2 t

]
dt . (17)

Integrated over t the first term on the right-hand side gives π and the second one,proportional to
cos2 t , gives π/2. Next we use the asymptotic expression for 	n , insert the explicit expression
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Figure 3. Fermi energy versus magnetic field for the electric modulation case. The solid curve
results from equation (20) and the dashed one from equation (16).

for f ′′(En), and replace the sum over n ≈ E/h̄ωc by an integral over E ; this results in

neπ�2 =
∫ ∞

0

dE

h̄ωc

{
f (E) +

V 2
0 β2

8πα

sinh[β(E − EF )/2]

cosh3[β(E − EF )/2]
cos2(α − π/4)

}
, (18)

where β = 1/kB T . The first term gives EF/h̄ωc. The second term is nonzero near the Fermi
energy, |E − EF | � kB T � EF . With E = EF (1 + x), |x | � 1, making the approximation
(1+x)1/2 ≈ 1+x/2 in the argument of cos2[· · ·], and (1+x)−1/2 ≈ 1−x/2 in the denominator,
we get

(1 − x/2) cos2[αF (1 + x/2) − π/4], (19)

where αF = α(EF ) = K Rc. Expanding the cos2[· · ·] term in powers of x and inserting the
result in equation (18) we see immediately that the even powers of x give, upon integration,
zero. The first nonvanishing result comes from the term ∝x . To second order in V0 the final
result for EF , including both terms, is obtained:

EF = E0
F − V 2

0

4π EF

[
cos(2K Rc) − 1

K Rc
cos2(K Rc − π/4)

]
, (20)

where E0
F = neπ h̄2/m∗ is the Fermi energy of a free 2DEG in zero magnetic field. EF can

be obtained by solving equation (20). In figure 3 we show the Fermi energy versus magnetic
field as it results from equation (20) (solid curve) and from equation (16) (dashed curve). The
parameters in the calculation are V0 = 0.5 meV, a = 350 nm, � = 4 K, T = 1 K and
ne = 3 × 1011 cm−2. As can be seen, for weak magnetic fields (B < 0.5 T) the agreement
between the two curves is rather good. Clear differences are found on the right half where
the result from equation (16) shows the SdH oscillations while the semiclassical one misses
them, as expected. The phase and period of the Weiss oscillations in both results are in perfect
agreement.

4.2. Magnetic modulation

We follow verbatim the procedure just outlined for the electric modulation. Using the
corresponding asymptotic expression for 	n in equation (17) we find again equation (18)
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Figure 4. Fermi energy versus magnetic field for the magnetic modulation case. The solid curve
results from equation (21) and the dashed one from equation (16).

with V0 replaced by h̄ω0, cos2(α −π/4) by sin2(α −π/4) and 1/α by α/(K�)4. The integrals
are performed as above and the end result for EF is given by

EF = E0
F +

1

2π(K�)2

(h̄ω0)
2

h̄ωc

[
cos(2K Rc) − 1

K Rc
sin2(K Rc − π/4)

]
. (21)

In figure 4 we show the Fermi energy versus magnetic field as it results from equation (21)
(solid curve) and from equation (16) (dashed curve). The parameters in the calculation are
B0 = 0.04 T, a = 350 nm, � = 4 K, T = 1 K and ne = 3 × 1011 cm−2. As can be seen, the
overall agreement between the two curves is rather good. The differences are the same as for
the electric modulation but now the SdH oscillations are seen more clearly in the integration
result from equation (16).

5. Electric and magnetic modulations

Both methods of magnetic modulation mentioned in section 1 are expected to be accompanied
by an electric one since gates are applied to the heterostructure. We are thus led to study how
the results of section 3 are modified when an electric and a magnetic modulation with the same
period are present. Two cases are of interest: when the two modulations are in phase and when
they are out of phase.

5.1. In-phase modulations

When both modulations treated in section 2 are present and are in phase, the energy spectrum,
to first order in the modulation strengths, reads

Enky = (n + 1/2)h̄ωc + [V0 Fn(u) + h̄ω0Gn(u)] cos(K x0). (22)

At the Fermi energy the bandwidth is equal to

2V0

√
2/π K Rc

√
1 + δ−2

F sin(K Rc − π/4 + φ), (23)
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where δF = K V0/kFh̄ω0 = tan φ. Notice that the flat-band condition now reads 2Rc/a =
i + 1/4 − φ/π and depends on the relative strength of the two modulations.

The changes mentioned above will be reflected in the DOS and the Fermi level
as well as in the transport coefficients treated before. The DOS will have the terms
appearing in equations (12) and (15) and extra terms resulting from the cross term in 	2

n ,
namely 2V0 Fn(u)h̄ω0Gn(u). The asymptotic expression for this cross term is equal to
(V0h̄ω0/πu) sin(4

√
nu − π/2). Using the same procedure as above the DOS is obtained

as
D(E)

D0
= 1 − 1

4π

(
V̄0

Ē

)2

αe−α�̄/Ē [(1 − δ−2) sin(2α) − 2 cos(2α)/δ + (1 + δ−2) cos(2α)/α]

+ 2
∞∑

n=1

(−1)ne−2nπ�̄ cos(2nπ Ē)

{
1 − πn2

α
V̄0

2
[(1 − δ−2) sin(2α)

−2 cos(2α)/δ + (1 + δ−2)]

}
, (24)

where δ = δ(E) = (V0/h̄ω0)(K 2�2/α). In figure 5(a) we show the DOS as a function of
energy with in-phase electric and magnetic modulations. The solid curve is the result from the
analytical expression in equation (24) and the dashed one the numerical result obtained from
equation (6). The parameters in the calculation are a = 350 nm, B0 = 0.04 T, V0 = 0.2 meV,
B = 0.58 T and � = 4 K. The dips at the Landau levels for E < 10 meV are due to the fact
that the condition |	n| < � is not satisfied. Figure 5(b) shows the DOS at the Fermi energy as
a function of the magnetic field. The Fermi energy is fixed at EF = 10 meV. The disagreement
around B = 0.3 T and the dips at the DOS maxima for B > 0.6 T are due to the same factor,
i.e., the condition |	n| < � is not satisfied.

The result for the Fermi level will have the terms of equations (20) and (21) and an
extra term resulting from the same cross term in 	2

n. Using the same procedure as above the
contribution of this term is obtained as −(V0h̄ω0/π K Rch̄ωc) sin(2K Rc). In terms of δF and
V0 the full result for the Fermi level can be written as

EF = E0
F +

V 2
0

4π EF
{(1 − δ−2

F )[(2K Rc)
−1 − cos(2K Rc)]

+ [(1 + δ−2
F )(2K Rc)

−1 − 2δ−1
F ] sin(2K Rc)}. (25)

It is interesting to notice that the flat-band condition 2Rc/a = i + 1/4 − φ/π together with
δF = δ(EF ) = (V0/h̄ω0)(K/kF ) = 1 = tan φ simplify the result for EF considerably: the
last term in equation (25), proportional to sin(2K Rc) vanishes and the second term ∼V 2

0 on
the first line can be neglected.

Figure 6 shows the Fermi energy versus magnetic field as it results from equation (25)
(solid curve) and from equation (16) (dashed curve). The parameters used in the calculation
are a = 350 nm, B0 = 0.04 T, V0 = 0.2 meV, � = 4 K, T = 1 K and ne = 3 × 1011 cm−2.
We see again that the Weiss oscillations on the two curves agree well.

5.2. Out-of-phase modulations

If light is shone on top of a magnetically modulated heterostructure the light pulses will ionize
DX centres in the AlGaAs layer between the gates (e.g. stripes of magnetic materials) where
B0 = 0. This will create an electric modulation π/2 out of phase with the magnetic one.
Assuming that the electric modulation of the gates is much smaller than that of the light,
something that can be achieved by contacting the gates, we are led to consider transport in the
presence of the two modulations that are π/2 out of phase.
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Figure 5. (a) The DOS of a 2DEG as a function of energy for in-phase electric and magnetic
modulations. (b) The DOS at the Fermi energy as a function of the magnetic field. The solid
curves result from equation (24) and the dashed ones are results from equation (6).
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Figure 6. Fermi energy versus magnetic field for in-phase electric and magnetic modulations. The
solid curve results from equation (25) and the dashed one from equation (16).
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We consider the same electric modulation V0 cos(K x) and assume a magnetic one
described by B(x) = B + B0 sin(K x). To first order in V0 and B0 the eigenvalue Enky is

Enky = (n + 1/2)h̄ωc + h̄ω0Gn(u) sin(K x0) + V0 Fn(u) cos(K x0). (26)

This change and the corresponding one for the velocity have important consequences for the
transport coefficients [7] and for other quantities. For instance, the combined bandwidth at the
Fermi energy now is equal to

2V0

√
2/π K Rc

√
1 + (δ−2

F − 1) sin2(K Rc − π/4). (27)

If δF = ±1 the bandwidth no longer oscillates as a function of the magnetic field, i.e., the
Weiss oscillations are washed out.

There is no cross term involving the product h̄ω0V0 in the expression for the DOS or
the Fermi level because in either of them the relevant integrand over t , once the expansion in
powers of 	n is made, is cos t sin t which upon integration gives a zero contribution. Hence,
in this case the DOS is given by

D(E)

D0
= 1 − 1

4π

(
V̄0

Ē

)2

αe−α�̄/Ē [(1 − δ−2) sin(2α) + (1 + δ−2) cos(2α)/α]

+ 2
∞∑

n=1

(−1)ne−2nπ�̄ cos(2nπ Ē)

×
{

1 − πn2

α
V̄0

2
[(1 + δ−2) + (1 − δ−2) sin(2α)]

}
. (28)

Figure 7(a) shows the DOS as a function of energy. The solid curve results from equation (28)
and the dashed one from equation (6). The parameters in the numerical calculation are taken
the same as in figure 5. Figure 7(b) shows the DOS at the Fermi energy as a function of the
magnetic field.

The Fermi level is now obtained as

EF = E0
F +

V 2
0

4π EF
{(1 − δ−2

F )[2K Rc)
−1 − cos(2K Rc)] + (1 + δ−2

F )(2K Rc)
−1 sin(2K Rc)}.

(29)

As can be seen, the condition δF = 1 is now sufficient for the Fermi level to be given
approximately by the zero-field term E0

F since all other terms, of order 1/αF = 1/K Rc � 1,
can be neglected. Accordingly, the Weiss oscillations are suppressed for δF = 1. This
suppression is in line with that found to occur in the transport coefficients [7]. Figure 8 shows
the Fermi energy versus magnetic field as it results from equation (29) (solid curve) and from
equation (16) (dashed curve).

6. Conclusions

We obtained explicit analytic expressions for the Weiss oscillations in the DOS and in the
Fermi level EF of a 2DEG in the presence of (i) an electric and (ii) a magnetic modulation.
The oscillations in case (ii) are different from those in case (i) in two important aspects:

(1) there is a π/2 phase shift between the oscillations, and
(2) for equal modulation strengths, i.e., for V0 = h̄ωc, the oscillation amplitude in case (ii) is

much larger than in case (i).
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Figure 7. (a) The DOS of a 2DEG as a function of energy for out-of-phase electric and magnetic
modulations. (b) The DOS at the Fermi energy as a function of the magnetic field. The solid curves
are the results as given by equation (28) and the dashed ones are the results of equation (6).
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Figure 8. Fermi energy versus magnetic field for out-of-phase modulations. The solid curve results
from the analytic expression given by equation (29) and the dashed one from equation (16).
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In a real experimental system we expect that an electric modulation will inherently be
present with each magnetic modulation. Therefore, we have also studied the case in which
both types of modulation are present in a 2DEG. We found that if the modulations are in
phase the extremal positions of the Weiss oscillations are shifted continuously with increasing
strength of the electric oscillation. On the other hand, when the modulations are π/2 out of
phase a different behaviour is found: with increasing electric modulation strength the position
of the Weiss oscillations is not influenced but their amplitude is. If B0 is kept constant for a
critical value of the strength of the electric modulation the Weiss oscillations disappear and
with a further increase of the modulation strength the Weiss oscillations reappear but now the
maxima appear at the position of the previous minima.

Finally, as the figures demonstrate, there is an overall good agreement between the exact
and the approximate results for the DOS and the Fermi energy. Discrepancies in the DOS
could be found at the position of the Landau levels as the Landau band width is larger than the
impurity broadening. As expected, the agreement in the Fermi energy holds only for the Weiss
oscillations and not the SdH ones. Accordingly, in the regime of the former oscillations one
can safely use the approximate results of the paper instead of the more involved exact ones.
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Appendix. Gaussian-broadened DOS

We replace the δ-function in equation (5) by a Gaussian of width � and expand the integrand
in powers of 	n cos t . Corresponding to equation (7) we now obtain

D(E)

D0
= h̄ωc√

π

1

�

∞∑
n=0

e−(E−En)2/�2

[
1 +

	2
n

2

2(E − En)
2 − �2

�4

]
. (.1)

The sum over n can be evaluated by applying the recipe (8) to equation (30). We make
the same approximations as in the case of a Lorentzian broadening and use the formula∫ ∞

0 exp(−ax2) cos(bx) dx = (π/4a)1/2 exp(−b2/4a). After summing over n the first term
in the square brackets of equation (30) gives equation (9) with exp(−2nπ�̄) replaced by
exp(−(nπ�̄)2). That is,

D1 = 1 + 2
∞∑

n=1

(−1)ne−(nπ�̄)2
cos(2nπ Ē). (.2)

Using similar approximations as before the corresponding result for the second term, labelled
D2, reads

D2 ≈ − α

4π

(
V̄0

Ē

)2

e−(α�̄/2Ē)2
[sin(2α) + α−1 cos(2α)]

−4π

α
V̄0

2
cos2(α − π/4)

∞∑
n=1

(−1)nn2 cos(2nπ Ē)e−(nπ�̄)2
. (.3)

Due to the factor exp(−(nπ�/h̄ωc)
2) in the summands the sums can be well approximated by

the n = 1 term alone.
In a similar manner one can obtain the results for a magnetic modulation.
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